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Using the renormalization methods we show that the symmetry breaking in the
quantum Widom–Rowlison model of particles obeying Boltzmann statistics
occurs at any value of the inverse temperature b > 0 once the activity of the
particles is sufficiently large.
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1. INTRODUCTION

Rigorous analysis of phase transitions in the continuous particle systems of
statistical mechanics is an almost entirely open problem. The symmetry
breaking has been proven for the Widom–Rowlison model in refs. 1 and 2
and, in a recent ground breaking work, (3) for a class of continuous Kac
models with four-body repulsive interactions. Most of the conventional
lattice tools, such as ferromagnetic inequalities and related renormalization
procedures or the Pirogov–Sinai theory cannot be readily extended to the
continuum setup, and new ideas and techniques are pending.

In this note we prove the existence of symmetry breaking in the quantum
version of the Widom–Rowlison model. Our research has been motivated by
the work, (4) and, in the case of Boltzmann statistics which we study here, we
improve the results of the latter paper. While ref. 4 is an extension of Ruelle’s
original Peierls type arguments (1) to the quantum case, our approach is built
on the alternative geometric analysis developed in ref. 2.

The classical Widom–Rowlison model (5) describes a gas of two types of
particles, which we shall denote A and B. The free distribution of each
particle type is Poisson with the same activity l, and the only interaction is



the hard core exclusion between particles of different types. It is conceivable
that at large activities l equilibrium states should be characterized by a
‘‘squeezing out’’ of one of the two particle types, or, equivalently, by putting
weight on predominantlyA or B particle configurations. The results of refs. 1
and 2 furnish a rigorous version of this picture.

The quantum counterpart of the Widom–Rowlison model proposed in
ref. 4 is based on the sample path representation of quantum statistical
mechanics (see refs. 6 or 7, Chap. 6.3). The free reference measures describe
Poisson gases of A and B non-interacting Brownian loops, and the hard
core exclusion condition acts time-wise on the loops of different colour.
The situation here is more complicated than in the classical case due to a
certain loss of locality: in principal arbitrary many loops of both colours
can visit a given part of the space without violating the hard core con-
straint. Consequently, the renormalization procedures we employ are not
only on the level of the space, but also take into account various loop
lengths via an introduction of appropriate cut-offs.

In the next section we define the model and formulate the main result
of the paper, which asserts symmetry breaking at any b > 0 once the acti-
vity l is large enough. The crucial stochastic geometric representation (gray
representation in the language of ref. 2) of the system is adjusted to the
quantum case in Subsection 3.1. In the rest of Section 3 we set up the
renormalization notation and formulate the decoupling estimates which
are used to prove the phase separation phenomenon. Finally, our basic
stochastic domination result Lemma 3.1 is proved in the concluding Sec-
tion 4 along with the short and long loop renormalization upper bounds.

2. THE RESULT

2.1. The Reference Measure

It is convenient to describe non-interacting loops in terms of the Poisson
point process of excursions: Namely, given the value of the inverse temperature
b, the excursion setUb is the space of Brownian loops of the time durationb:

Ub=C0, 0([0, b], Rd) ¸ {w ¥ C([0, b], Rd) : w(0)=w(b)=0},

and, respectively, the excursion measure Pb is the Brownian bridge measure
on Ub, that is w( · ) is distributed under Pb as

w̄(t)−
t
b
w̄(b), (2.1)

where w̄ is the standard Brownian motion on Rd.
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Thus, the distribution of the non-interacting gas of both A and B
loops is given by the following unnormalized measure nlb: Using the nota-
tion {x

¯
, w
¯
}={(x1, w1),..., (xn, wn)},

nlb(X ¥ d{x
¯
, w
¯
})=nlb(d{x¯

, w
¯
})=ln D

n

1
Pb(dwk)D

n

1
dxi. (2.2)

In other words, given measurable subsets L … Rd and A …Ub, the random
variable

N(L, A)=#{(x, w) ¥X : x ¥ L and w ¥ A}

has Poisson distribution with the intensity l |L |Pb(A).

2.2. The Quantum Widom–Rowlison Model

To set up the notation, use XL, b to denote the space of Brownian
loops originating in L … Rd,

XL, b={(x, w) : x ¥ L and w ¥Ub}.

Quantum particle configurations X on a bounded L are, then, finite subsets
of XL, b. As we have already mentioned, the weights (2.2) give the distribu-
tion of the non-interacting gas of loops both in the case of particles of the
type A and of the type B. For two given configurations {x

¯
A, w
¯

A} and
{x
¯

B, w
¯

B} of A and B type particles the formal hard-core exclusion interac-
tion potentialHb

a with the interaction radius a > 0 is given by

Ha
b({x¯

A, w
¯

A}, {x
¯

B, w
¯

B})

=C
n

k=1
C
m

l=1
F
b

0
qa(x

A
k+w

A
k (t)−xB

l −w
B
l (t)) dt,

where

qa(r)=3
0, if |r| > 2a
., otherwise

Accordingly, the Boltzmann statistics for the Widom–Rowlison gas of two
types of particles A and B with the hard core exclusion in the vessel L … Rd

is specified by the weights

nl, aL, b(X
A ¥ d{x

¯
A, w
¯

A}, XB ¥ d{x
¯

B, w
¯

B})

=e−H
a
b(X

A, XB)nlb(d{x¯
A, w
¯

A}) nlb(d{x¯
B, w
¯

B}). (2.3)
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where XA, XB … XL, b are the random configurations of, respectively, A and
B loops.

Let Pl, aL, b denote the corresponding (normalized) probability measure.
We shall use the shortcut n for the domains Ln=[−n/2, n/2]d.

Theorem 2.1. For every b > 0 and every r > 0 there exists l0=
l0(b, a, r) and positive constants c1,c2 > 0, such that uniformly in n and
l \ l0,

Pl, an, b(max{N
A,NB}−min{NA,NB} < rnd) [ c1 e−c2 n

d−1
, (2.4)

where NA=#(XA) (respectively NB=#(XB)) is the number of A-loops
(respectively B-loops) originating in Ln.

3. STRUCTURE OF THE PROOF

3.1. The Gray Representation

Following the approach of ref. 2 to the classical Widom–Rowlison
model, let us consider the induced distribution of X=XA 2XB, which is
specified by the (unnormalized ) weights

nl, an, b(X ¥ d{x
¯
, w
¯
})=2Ca(X)nlb(X ¥ d{x

¯
, w
¯
}), (3.1)

where Ca(X) is the number of the maximal connected components of X:
Two loops (xk, wk) and (xl, wl) are said to be connected if,

min
0 [ t [ b

|xk+wk(t)−xl −wl(t)| [ 2a.

The joint configuration (XA, XB) could be recovered from the gray con-
figuration X via the independent coloring maximal connected components
of X into A or B with the probability 1/2 each.

It has been observed in ref. 2 that the gray representation of the classical
Widom–Rowlison model is reminiscent of the Fortuin–Kasteleyn random
cluster representation of lattice ferromagnetic systems. In particular, appro-
priate versions of various FKG inequalities hold in the classical case, which
lead not only to the proof of the symmetry breaking but also to a mea-
ningful definition of the surface tension. As we have already remarked, due
to the loss of locality the quantum situation is more complicated, and one
needs more care in devising the corresponding renormalization procedures.
Nevertheless, to a certain extent such a ‘‘ferromagnetic’’ approach goes
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through, and clustering properties of the field of gray loops can be stochasti-
cally compared with those of the Bernoulli site percolation process. This is
our main technical tool to prove Theorem 2.1.

3.2. Comparisonwith the Bernoulli Site Percolation

We shall prove that for large values of the activity lmost of the vessel L
will be, with overwhelming probabilities, covered by a large connected com-
ponent of the gray configuration X. Roughly speaking the symmetry break-
ing excess density r in Theorem 2.1 is the density of this largest cluster and
the dominant phase corresponds to its color which, according to the recon-
struction procedure of coloured loops from the gray ones, could be either
A or B with probability 1/2 each. This is essentially the strategy of ref. 2.
However, the straightforward realization-wise FKG comparison approach
of ref. 2 does not apply in the quantum case we consider here. Indeed, unlike
the classical case, adding an extra loop to the configuration X could drasti-
cally reduce the number of disjoint clusters Ca(X). This, of course, happens
because loops can be arbitrary long. On the other hand very long loops are
improbable under the reference excursion measure Pb. Accordingly let us fix
h ¥ R+ and split the space of loops Xn, b into the disjoint union of h-short and
h-long parts,

Xn, b=X
s
n, b KX l

n, b where X s
n, b={(x, w) ¥ Xn, b : diam(w) [ h}.

Subsequently, the realizationX of the (gray) point process of loops splits as

X=(X 5 X s
n, b)K (X 5 X l

n, b) ¸X sKX l.

A simple but important observation is that the point processes X s and X l

are independent under the reference measure (2.2).
Without loss of generality let us assume that the radius of the interac-

tion a divides n and that n/a is odd. Then, we split Ln into smaller boxes of
the linear size a as

Ln=0
t ¥ La

n

La(t), (3.2)

where La
n=aZd 5 Ln and La(t)¸ t+La.

Given a number k ¥N let us define the dependent percolation process
Xk

a on {0, 1}
L
a
n as

Xk
a(t)=3

1, if #{X s 5 {(x, w) ¥ Xn, b : x ¥ La(t)}} \ k
0, otherwise

(3.3)
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In other words, X s
a(t) is the indicator function of the event that at least k

h-short loops originate in La(t). Theorem 2.1 is an immediate consequence
of the following

Proposition 3.1. For every b > 0, k ¥N and p < 1 there exist the
short loop parameter h=h(b, a, k, p) and the activity l0=l0(b, a, k, p)
such that for every l \ l0 the distribution of {X

k
a(t)} under P

l, a
n, b stochasti-

cally dominates the independent Bernoulli site percolation measure Pperc
p on

{0, 1}L
a
n.

Indeed, the surface order of the decay exponent in (2.4) is, by the
FKG domination, inherited from the corresponding results on the high
density Bernoulli site percolation. (8, 9)

The proof of Proposition 3.1 is based on the following version of the
strong FKG lattice condition (c.f. ref. 10): Let S be a finite set and P, Q
two probability measures on {0, 1}S. Then P stochastically dominates Q
whenever

P(gKds)
P(g)

\
Q(tKds)
Q(t)

(3.4)

is satisfied for every ordered couple of configurations g, t ¥ {0, 1}S; g \ t
and every s ¥ S.

3.3. Partition of Ln into Small Boxes

The FKG comparison techniques suggested by (3.4) yield better results
when applied on smaller scales. Let r° a and a/r ¥N is odd. As in (3.2)
we split Ln into the union of small r-boxes

Ln=0
i ¥ Lr

n

Lr(i), (3.5)

where L r
n=rZd 5 Ln and Lr(i)=i+Lr. Given the short-loop parameter h

define

Xr(i)=3
1, if {X s 5 {(x, w) ¥ Xn, b : x ¥ Lr(i)}} ]”
0, otherwise

(3.6)

Thus, Xr(i) is the indicator function of the event that there is at least one
h-short loop of X s originating from Lr(i).
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Lemma 3.1. For every b > 0, r > 0 and q < 1/2 there exist h=
h(b, a, r, p) and l0=l0(b, a, r, p) such that for every l \ l0 the distribution
of {Xr(i)} under P

l, a
n, b stochastically dominates the independent Bernoulli

site percolation measure Pperc
q on {0, 1}L

r
n.

Since for every t ¥ Lk
n the variable Xk

a(t) is a monotone function of
(a/r)d variables Xr(i) with Lr(i) … La(t), the field {Xk

a(t)} stochastically
dominates the Bernoulli site percolation measure Pperc

p on Lk
n , where

p=Pperc
q
1 C

i : Lr(i) … La(t)
Xr(i) \ k2 ,

or, in other words, the claim of the Proposition 3.1 follows with (k°

(a/r)d in the inequality below)

p=1− C
k−1

j=0

1 (a/r)
d

k
2 q j(1−q) (a/r)

d−j \ 1− exp 3−1
2
1a
r
2d q4 .

4. PROOF OF LEMMA 3.1

4.1. Decomposition ofX

By the strong FKG lattice condition (3.4) it is enough to show that for
every i ¥ L r

n and each vector b ¥ {0, 1}
L
r
n,

nl, an, b(Xr(i)=1; Xr(j)=bj for j ] i)
nln, b(Xr(i)=0; Xr(j)=bj for j ] i)

\
q

1−q
. (4.1)

At this stage the long-loop cutoff h becomes functional: Given i ¥ L r
n we

decompose the set of all loops Xn, b into four subsets,

Xn, b=X
s, i
n, b KX s, Ln0 i

n, b KX l, i
n, b KX l, Ln0 i

n, b , (4.2)

where X s, i
n, b is the set of all h-short loops originating from Lr(i),

X s, i
n, b={(x, w) ¥ X s

n, b : x ¥ Lr(i)},

whereas X s, Ln0 i
n, b contains the remaining h-short loops which originate in

Ln0Lr(i). As for the long loops, the set X
l, i
n, b comprises those which reach

L2a+r+h(i),

X l, i
n, b=3(x, w) ¥ X l

n, b : 0
t ¥ [0, b]

(x+w(t)) 5 L2a+r+h(i) ]”4 ,
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whereas the rest of the long loops are contained in the set X l, Ln0 i
n, b . Notice

that that the definitions are designed in such a way that the short loops
from X s, i

n, b cannot interact with the long loops from X
l, Ln0 i
n, b . Thus, the non-

local contribution to the left hand side of (4.1) can come only from the
long loops from X l, i

n, b. The choice of the cutoff h below will be designed to
make the probability having such loops small.

In view of (4.2) any loop configuration X … Xn, b could be decomposed
into

X=X s
i KX s

Ln0 i KX l
i KX l

Ln0 i.

Under the reference measure nlb the point processes X
s
i , X

s
Ln0 i, X

l
i and X l

Ln0 i

are independent and Poisson. Furthermore, substituting the trivial bound

Ca(X) [ Ca(X
s
i KX s

Ln0 i KX l
Ln0 i)+#(X l

i),

into the representation formula (3.1), we infer that for every (measurable)
subset A … X s

n, b,

nl, an, b(X
s ¥ A) [ nl, an, b(X

s ¥ A; X l
i=”) C

.

k=0
2k n

l
b(#(X

l
i)=k)

nlb(X
l
i=”)

. (4.3)

4.2. Long Loops: The Bound on ;/

k=0 2
knlb(#(X

l
i)=k)

To simplify the notation we shall consider i=0. By (2.1), there exists
c3=c3(d), such that uniformly in R > 0,

Pb(diam(w) > R) [ exp 3−c3
R2

b
4 . (4.4)

Pick R=8a+4h+2r and consider the decomposition of Rd,

Rd= 0
y ¥ RZd

LR(y)= 0
y ¥ RZd

1y+5− R
2
,
R
2
6d2 . (4.5)

Decomposing the h-long loops with respect to the sets in the decomposition
(4.5) from which these loops originate we infer that the total number #(X l

0)
of h-long loops reaching LR/2 is, under the reference measure n

l
b, distrib-

uted Poisson with the intensity m=m(l, b, R) bounded above as

m [ c4l C
.

k=1
kd−1Rd e−c3 k

2R2/b [ c5l e−c3 h
2/b, (4.6)
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where the constants c4, c5 depend only on the dimension d. As a result,

C
.

k=0
2k n

l
b(#(X

l
i)=k)

nlb(X
l
i=”)

=e2m [ exp{2c5l e−c3 h
2/b}. (4.7)

4.3. Short Loops

The estimates (4.3) and (4.7) enable to control and ignore long loops
from X l, i

n, b. Since the loops from X
s, i
n, b and X

l, Ln0 i
n, b do not interact, and any

collection of loops from X s, i
n, b is capable of hitting at most c6(h/a)d

mutually disconnected short loops from X s, Ln0 i
n, b , the following bound

always holds:

Ca(X
s
i KX s

Ln0 i KX l
Ln 0 i) \ Ca(X

s
Ln0 i KX l

Ln0 i)−c6(h/a)d. (4.8)

Returning to the right hand side of (4.1) we estimate:

nl, an, b(Xr(i)=1; Xr(j)=bj for j ] i)

\ nl, an, b(Xr(i)=1; Xr(j)=bj for j ] i; X l
i=”)

\ 2−c6(
h
a)

d nlb(X
s
i ]”)

nlb(X
s
i=”)

nl, an, b(Xr(i)=0; Xr(j)=bj for j ] i; X l
i=”),

(4.9)

where the last inequality follows by (4.8). On the other hand, by (4.3) and
(4.7) the following lower bound holds:

nl, an, b(Xr(i)=0; Xr(j)=bj for j ] i; X l
i=”)

\ exp{−2c5l e−c3h
2/b} nl, an, b(Xr(i)=0; Xr(j)=bj for j ] i)

Finally,

nlb(X
s
i ]”)

nlb(X
s
i=”)

=C
.

k=1

(lsrd)k

k!
=els r

d
−1,

where ls ¸ lPb(diam(w) [ h). By (4.4) ls \ (1− e−c3 h
2/b) l. As a result, the

right hand side of (4.9) is bounded below by

exp 3l(1− e−c3 h
2/b) rd−c6 1

h
a
2d−2c5l e−c3 h

2/b4

× nl, an, b(Xr(i)=0; Xr(j)=bj for j ] i),
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and, consequently, we arrive to the following estimate on the ratio of
probability weights in the lattice FKG condition (4.1):

nl, an, b(Xr(i)=1; Xr(j)=bj for j ] i)
nl, an, b(Xr(i)=0; Xr(j)=bj for j ] i)

\ exp 3l 1 rd−c7 e−c3 h
2/b)−c61

h
a
2d4 ,

with the constants c3, c6 and c7 being dependent only on the dimension d.
This implies the claim of Lemma 3.1.
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